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Abstract

Partial eigensystem assignment with output feedback can lead to an unstable closed-loop

system. However, output feedback with passive linear time-invariant systems, such as flexible

space structures, is guaranteed to be stable if the controller is dissipative. This paper presents a

novel approach for synthesis of dissipative output feedback gain matrices for assigning a selected

number of closed-loop poles. Dissipativity of a gain matrix is known to be equivalent to positive

semidefiniteness of the symmetric part of the matrix. A sequential procedure is presented to

assign one self-conjugate pair of closed-loop eigenvalues at each step using dissipative output

feedback gain matrices, while ensuring that the eigenvalues assigned in the previous steps are

not disturbed. The problem of assigning one closed-loop pair is reduced to a constrained solution

of a system of quadratic equations, and necessary and sufficient conditions for the existence of

a solution are presented. A minimax approach is presented for determining parameters which

satisfy these conditions. This method can assign as many closed-loop system poles as the

number of control inputs. A numerical example of damping enhancement for a flexible structure

is presented to demonstrate the approach.
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Introduction

Pole placement has been studied extensively in the literature to shape transient response

of the closed-system. Many techniques are available for eigensystem assignment with full

state feedback. These techniques exploit the freedom beyond pole placement for multivariable

systems, identified in Ref. 1, for other objectives such as enhancing robustness of the pole

placement and minimizing the norm of the feedback gain needed to accomplish the placement2,3.

However, full state feedback is not feasible for many control applications such as control of

flexible structures. The dynamics of flexible structures is described by infinite dimensional

equations and is usually approximated by large second-order discrete models; therefore, the

measurement of the full state is not feasible. Output feedback pole placement is the practical

choice for such systems. However, much of the literature for output feedback eigensystem

assignment deals with relatively low order systems, where the number of states is less than

the sum of inputs and outputs4,5,6, and therefore is not applicable for problems like control

of flexible structures. Conditions on the closed-loop eigenvectors for the existence of output

feedback gain matrices to accomplish the desired eigenvalue placement are discussed in Ref.

7. References 8 and 9 present techniques for synthesis of output feedback gains, which assign

a self-conjugate subset of the closed-loop eigenvalues. However, a major drawback of using

output feedback for eigensystem assignment of large order systems is that while assigning a

self-conjugate set of eigenvalues, the feedback may cause other closed-loop poles of the system

to become unstable10. Therefore, it is desirable to develop techniques for output feedback gain

matrices which assign dominant modes of the system while ensuring that the overall system is

not destabilized. This problem is addressed in the current paper for strictly passive linear time-

invariant systems in descriptor form, which are used in the characterization of the dynamics

of flexible space structures.

Robust control of flexible space structures is difficult due to its dynamic characteristics,

namely, numerous closely-spaced, low frequency modes with little inherent damping11.

Moreover, the parameters associated with flexible structure models such as modal frequencies,
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damping and mode shapes often cannot be identified accurately. Feedback control is further

complicated by instabilities induced by observation and control spillovers11. However, with

collocated and compatible actuators and rate sensors, the system dynamics are passive,

irrespective of unmodelled dynamics and parametric uncertainty12,13,14. Moreover, by the

passivity theorem15, a strictly passive controller guarantees robust stability of the closed-loop

system. For constant gain feedback, strict passivity requires that the symmetric part of the

constant gain matrix be positive definite. Note that symmetry of the gain matrix is not necessary

for strict passivity. Positive definiteness of the symmetric part of the output feedback gain

matrix is necessary and sufficient for strict passivity. Similarly, when the plant is strictly

passive, a passive controller ensures robust closed-loop stability. Positive semidefiniteness of

the symmetric part of the gain matrix ensures passivity of a constant gain feedback controller.

Thus, a strictly passive system is guaranteed to be robustly stable with constant gain output

feedback if the symmetric part of the gain matrix is positive semidefinite.

Thus, the robust eigensystem assignment problem for strictly passive systems is to construct

output feedback gain matrices whose symmetric part is positive semidefinite. Preliminary

approaches to these problems are described in Refs. 16 and 17. Reference 17 presents a

sequential procedure through which a pair of self-conjugate eigenvalues is assigned to desired

locations at every step with the aid of generalized Schur decompositions and orthogonal state

transformations. This procedure is repeated until up tom self-conjugate closed-loop eigenvalues

have been assigned, wherem is the number of control inputs to the system. At each step

the output feedback gains are designed such that the previously placed eigenvalues remain

unchanged. This approach reduces the problem of assigning one self-conjugate pair of closed-

loop eigenvalues to constrained solution of a set of quadratic equations. In this paper, necessary

and sufficient conditions for the existence of a solution to these quadratic equations are presented

in this paper for two cases, namely, the nonsymmetric gain matrices and the symmetric gain

matrices. Furthermore, a minimax approach is described for obtaining parameters which satisfy

the conditions for pole placement. Once parameters satisfying these conditions for pole placement

have been determined, the approach to evaluate output feedback gain matrices follows. These
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results are first developed for assigning dominant poles of passive LTI systems in descriptor

form, in particular, for damping enhancement of flexible space structures with rate feedback.

Then, these techniques are extended to pole placement with both position and rate feedback for

second-order models of mechanical systems, while ensuring stability of the overall closed-loop

system. The conditions guaranteeing stability in this case are that the symmetric part of the

rate gain matrix is positive semidefinite, and the position gain matrix is symmetric and positive

semidefinite. Corresponding quadratic equations and conditions for existence of a solution for

eigenvalue assignment using both rate and position feedback are presented. Finally, a numerical

example of damping enhancement in the dominant modes of a structural testbed at NASA

Langley (CEM phase II) is presented to demonstrate the application of this approach.

Passive LTI Systems

Systems that do not generate energy internally are referred to as passive systems.

Mathematically, input-output systems are defined to be passive ifhy;ui � �, where h�; �i

denotes the inner product of the input-output vector spaces,u is the input to the system,y is

the output of the system, and� is a parameter corresponding to the initial conditions of the

system15. First, consider a constant gain system,y = Gu, whereG is the constant gain matrix.

Note thatyTu = uTGu = uT (symfGg)u, where symfGg denotes the symmetric part ofG,

defined assymfGg = 1

2

�
G+GT

�
. Now, hy; ui � 0 (for passivity with� = 0) if and only if

sym fGg � 0, where “� 0” denotes positive semidefiniteness of the matrix on the left-hand

side of the inequality. Thus, it follows directly from the definition that positive semidefiniteness

of the symmetric part of the gain matrix,G, is equivalent to passivity of a constant gain system.

Next, consider passivity of LTI systems in descriptor form. Such LTI systems are expressed

as

E _z = Az +Bu; y = Cz +Du (1)

where z is the system state,y is the system output,u is the system input, and the matrices

(E;A;B;C;D) describe the dynamics of this system. For regular descriptor systems, the transfer
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function matrix of the LTI system isG(s) = C(sE �A)�1
B+D. Passivity of an LTI system can

equivalently be characterized asG(s)+G�(s) � 0 for all Refsg � 0 15. Extending the Kalman-

Yakubovitch lemma for passive LTI systems (or equivalently, positive real transfer functions) to

descriptor form, it follows that if there exist matrices,P = P T > 0; L andW , which satisfy

ATPE + ETPA = �LTL

ETPB � CT = �LTW

D +DT = W TW

(2)

then the transfer functionG(s) is positive real. Note that forE = I, the conditions in Eq. (2)

reduce to the necessary and sufficient conditions of the positive realness lemma12,13.

Dynamics of a flexible space structure with rate output provides an example of passive

LTI systems. The dynamics of flexible space structures are typically expressed in second order

form as

M �x+D _x +Kx = Fu (3)

wherex denotes ann� 1 vector of displacements,u denotes anm� 1 vector of control inputs,

M;D;K are mass, damping and stiffness matrices of the system, respectively, andF is an

n�m input influence matrix describing the actuator force distribution. The mass matrix,M , is

a symmetric, positive definite matrix for physical systems, and the damping and stiffness matrices

are symmetric, positive semidefinite matrices. Using compatible rate sensors, collocated with

the actuators, them�1 vector of rate output of the system is given byy = F T _x. Compatibility

of sensors and actuators implies that angular rate sensors are used with torquers, and linear

velocity sensors are used with force or thrust actuators. These conditions ensure that the output

influence matrix is the transpose of the input influence matrix. The dynamic equations for

second order models can be rewritten as
�
I 0
0 M

��
_x
�x

�
=

�
0 I
�K �D

��
x
_x

�
+

�
0
F

�
u; y =

�
0 F T

��x
_x

�
(4)

that is, the descriptor form

E _z = Az +Bu ; y = Cz (5)

5



where z =

�
x
_x

�
, E =

�
I 0

0 M

�
, A =

�
0 I
�K �D

�
, B =

�
0

F

�
and C = BT . Note that,

the conditions for positive realness in Eq. (2) above are satisfied withP =

�
K 0

0 M�1

�
,

L =
�
0
p
2LD

�
andW = 0, whereLD is a Cholesky factorization ofD, that is,D = LT

D
LD.

Note that the mass matrix is nonsingular, and the stiffness matrix must be nonsingular for

complete observability with rate feedback. Thus, the matrices above satisfy the conditions of

the lemma for passivity of descriptor systems. Note that symmetry and positive definiteness

properties of the matricesM;K andD follow from the physics of flexible structure dynamics and

do not depend on specific values of the mass, stiffness and damping parameters. Thus, dynamics

of flexible structures with rate output are passive irrespective of the parametric uncertainties

associated with the mass, stiffness and damping matrices of the system. Furthermore, truncation

of the system dynamics to a smaller set of modes for reduced-order design models does not

affect these passivity properties.

The control law for constant gain output feedback isu = �Gy, whereG is a constantm�m

output feedback gain matrix. The closed-loop system dynamics with output feedback are given

by E _z =
�
A�BGBT

�
z. If the system is strictly passive, stability of the closed-loop system is

guaranteed by the passivity theorem15 for any output feedback gain matrix whose symmetric part

is positive semidefinite. The main problem addressed in this paper is how to select a constant

output gain matrix, whose symmetric part is positive semidefinite, for assigning dominant poles

of a system to enhance closed-loop system response while ensuring over all closed-loop system

stability. The sequential procedure for assigning desired closed-loop eigenpairs described in this

paper assumes that the open-loop LTI system is strictly passive. Flexible space structures with

zero frequency rigid body modes, or modes with no damping, do not satisfy this condition. To

deal with such systems, static dissipative position and rate feedback controllers may be designed

first to ensure strict passivity of an intermediate closed-loop system12 , and the sequential

approach may be applied to this system for eigensystem assignment. Furthermore, subsequent

discussions assume that a low order control design model for plant dynamics, as opposed to

the full order finite element matrices, is used in the control design process. The reduction may
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be achieved through a number of model reduction techniques, such as modal truncation and

modal cost analysis.

Sequential Procedure

The task of assigning dominant poles of strictly passive LTI systems with output feedback

gain matrices whose symmetric part is positive semidefinite is accomplished in a sequential

manner. In each step of the sequential procedure, one self-conjugate pair of closed-loop

eigenvalues is assigned to desired values while making sure that the previously assigned closed-

loop eigenvalues are not disturbed. The approach is an extension of the ideas in Refs. 9 and

20 to descriptor systems with output feedback. Generalized ordered real Schur transformations

of the system matrices,E andA, are employed in each step of the sequential procedure, using

the following result from Ref. 21. Given two real matricesE andA, there exist orthogonal

transformationsL andU such that the matriceseE = LTEU and eA = LTAU are in ordered real

Schur form. This transformation is known as the generalized real Schur transformation. These

transformations are used to move previously assigned eigenvalue pairs to the top left block of the

pair
� eE; eA�, and the structure of the new gain matrix is prescribed such that it only affects the

eigenvalues in the lower bottom portion of the system matrices. At each step, after computing

the gain matrix that assigns a pair of desired closed-loop eigenvalues, the intermediate closed-

loop matrix is transformed to a generalized Schur form with all previously assigned eigenpairs

in the top left block of the updated system matrix. The overall output feedback gain matrix

is constructed by accumulating the gains from each step. Since the symmetric part of each of

the component matrices is positive semidefinite, the overall gain matrix also satisfies this robust

stability condition. This process can be continued untilm closed-loop eigenvalues have been

assigned to the desired locations.

The sequential procedure is conceptually straightforward and easy to implement in software

since updated variables in the sequential process overwrite previous variables. However,

description of the procedure below appears to be somewhat complicated due to notational
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details in expressing the algorithm. For initialization of the procedure, denote the original state

coordinates asz1 = z, the system matrices in the original state coordinates asE1 = E, A1 = A,

B1 = B, C1 = C, and, initially, the output gain matrix isG0 = 0. At the kth step of the

sequential procedure,(k � 1) self-conjugate pairs of the closed-loop eigenvalues have been

placed in the previous steps. A gain matrixGk is computed in this step to place thekth pair

of the desired closed-loop eigenvalues while making sure that the(k � 1) self-conjugate pairs

assigned in the previous steps remain unchanged.

First, orthogonal matricesLk and Uk are selected such thateEk = LT

k
EkUk and eAk =

LT

k
AkUk are in ordered real Schur form, and the(k � 1) self-conjugate eigenvalue pairs assigned

in the previous steps are in the top left block of
� eEk; eAk

�
. Applying these transformations to

the system equations leads toeBk = LT

k
Bk and eCk = CkUk. If eGk is the gain matrix at the

kth step, the closed-loop equations would be of the formeEk
_ezk =

� eAk �
eBk

eGk
eCk

�ezk, where

ezk = UT

k
zk is the transformed state. The goal is to prescribe the structure for the gain matrix

eGk such that previously placed eigenvalues are not disturbed by this gain matrix.

The matriceseEk; eAk in ordered real Schur form are partitioned as follows:

eEk =

� eEk11
eEk12

0 eEk22

�
; eAk =

� eAk11
eAk12

0 eAk22

�
(6)

where eEk11; eAk11 are 2(k � 1) � 2(k � 1) matrices, eEk12; eAk12 are 2(k � 1) � 2(n� k + 1)

matrices, andeEk22; eAk22 are 2(n� k + 1) � 2(n� k + 1) matrices. Note that the orthogonal

matricesLk andUk have been selected such that the previously placed closed-loop eigenvalues

are the eigenvalues of
� eEk11; eAk11

�
, and the remaining eigenvalues of the system are

eigenvalues of
� eEk22; eAk22

�
. Corresponding partions ofeBk and eCk are

eBk =

� eBk1eBk2

�
; eCk =

� eCk1
eCk2

�
(7)

where eBk1 is a 2(k � 1)�m matrix, eBk2 is a 2(n� k + 1)�m matrix, eCk1 is am� 2(k � 1)

matrix, and eCk2 is a m � 2(n� k + 1) matrix.

Let eNk denote a matrix whose columns form an orthogonal basis for the left null space of

eCk1, that is, eNk is a matrix with orthogonal columns such thateNT

k
eCk1 = 0. Let mk denote the
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left nullity of eCk1, so that eNk is anm � mk matrix. If the gain matrixeGk is constructed as

eGk =
eNk

bGk
eNT

k
, where bGk may be an arbitrarymk �mk matrix, then output feedback witheGk

as the gain matrix will not affect the(k � 1) eigenvalue pairs assigned in the previous steps. To

see this, consider the expanded form of the following closed-loop matrix,

h eAk �
eBk

eGk
eCk

i
=

� eAk11
eAk12 �

eBk1
eNk

bGk
eNT

k
eCk2

0 eAk22 �
eBk2

eNk
bGk

eNT

k
eCk2

�
(8)

The first column of submatrices is not affected by the feedback sinceeNT

k
eCk1 = 0 by

design. Therefore, eigenvalues of
� eEk; eAk �

eBk
eGk

eCk

�
are the union of the eigenvalues of� eEk11; eAk11

�
and the eigenvalues of

� eEk22; eAk22 �
eBk2

eNk
bGk

eNT

k
eCk2

�
, that is, the previously

placed eigenvalues of
� eEk11; eAk11

�
remain unaffected by the output feedback.

The matrix bGk is selected to place thekth self-conjugate pair of closed-loop eigenvalues,�
�k; �k

�
. Denoting bEk = eEk22, bAk = eAk22, bBk = eBk2

eNk, and bCk = eNT

k
eCk2, the problem is

reduced to selecting anmk � mk output feedback gain matrix,bGk for the descriptor system

represented by the system matricesbEk, bAk, bBk, and bCk, such that
�
�k; �k

�
is an eigenvalue

pair of the closed-loop system
� bEk; bAk �

bBk
bGk

bCk

�
. It must be assumed at this point that the

controllable and observable subspaces for the system
� bAk; bBk; bCk

�
are not null. Note that, by

construction, if the symmetric part ofbGk is positive semidefinite, then the symmetric part of

eGk will be positive semidefinite, and ifbGk is symmetric and positive semidefinite, theneGk is

symmetric and positive semidefinite. Thus, ifbGk satisfies the criteria for robustness, so does

eGk. The procedure for selectingbGk is described in the next section.

Finally, the gain matrix is updated asGk = Gk�1+ eGk, and the system matrices are updated

asEk+1 = eEk, Ak+1 =
� eAk �

eBk
eGk

eCk

�
, Bk+1 = eBk, andCk+1 = eCk, for the succeeding

steps of the sequential procedure. Note thatmk, the dimension of the left null space ofeCk1

decreases by2 in each step of the sequential procedure, that is,mk = mk�1 � 2.

The sequential procedure above is repeated until all the desired dominant modes have been

shifted, up to a maximum ofm=2 modes or complex-conjugate pairs, wherem is the number

of inputs. Afterm=2 iterations of the procedure described above,mk, the dimension of the left

null space ofeCk1 will be zero, and there would be no freedom to assign additional eigenvalues.
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Eigenpair Assignment

This section describes the approach to select output feedback gains to assign one pair of

complex conjugate eigenvalues, while ensuring that (1) the symmetric part of the gain matrix

is positive semidefinite, or (2) the gain matrix is symmetric and positive semidefinite. For

notational simplicity, the system matrices will be denoted asE; A; B; C (corresponding tobEk; bAk; bBk; bCk of the previous section), the output feedback gain matrix will be denoted as

G (instead ofbGk of previous section), the number of inputs is denoted bym (in place ofmk)

and the desired eigenvalue pair will be denoted
�
�; �

�
rather than

�
�k; �k

�
. Therefore, in the

simpler notation, the problem is to select a matrixG, with a specified structure for robustness,

such that
�
�; �

�
is a generalized eigenpair of the closed-loop system matrix,(E; A�BGC).

Let � be the closed-loop eigenvector corresponding to the eigenvalue�. The generalized

eigenvalue problem becomes(�E �A+BGC)� = 0. This closed-loop expression can be

rewritten as

[�E �A j B ]

"
�

���
GC�

#
� �

"
�

���
GC�

#
= 0 (9)

It is obvious from Eq. (9), that the vector on the right hand side of the expression above must

lie in the right null space of�. Let N be a matrix whose columns form an orthogonal basis

for the null space of�, that is,�N = 0. Note that thoughE;A andB are real matrices,�

andN are complex matrices since the eigenvalue� is complex scalar. However, to ensure

that the gain matrix is real the closed-loop eigenvector corresponding to the complex-conjugate

eigenvalue is chosen to be the complex-conjugate of�, that is,� is chosen to be the eigenvector

corresponding to�. The overbar in the expressions in this section refer to complex-conjugation

of the elements of the corresponding vector (or matrix) only, as opposed to the Hermitian

operator, which involves transposition and complex-conjugation.

Since columns ofN span the null space of�, it follows that"
�

���
GC�

#
= N� =

"
N1

���
N2

#
� (10)

10



where� is an arbitrary vector of complex elements, and the matricesN1; N2 are formed by

partitioningN compatibly with� andGC�. Therefore,� = N1� andGC� = N2�, which

leads to

GCN1� = N2� (11)

The eigenassignment problem is now reduced to selecting� such that there exists a gain

matrix,G, satisfying Eq. (11) whose symmetric part is positive semidefinite. With� being the

eigenvector corresponding to�, real solutions for the gain matrixG can be obtained, and the

equations can be written out to involve only real arithmetic operations as follows.

For the eigenvalue,�, with closed-loop eigenvector,�, the matrix� =
�
�E �A j B

�
,

andN is a matrix whose orthogonal columns span the null space of�. If the arbitrary coefficient

vector is chosen to be�, the complex-conjugate of�, then it follows that

GCN1� = N 2� (12)

Eq. (11) and Eq. (12) can equivalently be rewritten as

GC[ Re(N1) �Im(N1) ]

�
Re(�)
Im(�)

�
= [Re(N2) �Im(N2) ]

�
Re(�)
Im(�)

�
(13)

and

GC[ Im(N1) Re(N1) ]

�
Re(�)
Im(�)

�
= [ Im(N2) Re(N2) ]

�
Re(�)
Im(�)

�
(14)

where Re(�) denotes real part of the argument, andIm(�) denotes imaginary part of the

argument. In compact form these equations are written out as

GW1p = V1p

GW2p = V2p
(15)

where p = [Re(�); Im(�) ], W1 = C[Re(N1) �Im(N1) ], V1 = [Re(N2) �Im(N2) ],

W2 = C[Im(N1) Re(N1) ], and V2 = [Im(N2) Re(N2) ]. Note that Eq. (15) is a system

of quadratic equations in the unknown variables, namely, the elements of the gain matrix,G,

and the coefficient vector,p. Further, the elements ofG are constrained such thatsym(G) � 0.

Solution of Eq. (15) provides the desired pole placement with dissipative gain matrices. The
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following proposition gives the necessary and sufficient conditions to be satisfied by a coefficient

vector p for the existence of a solution matrixG of desired structure22.

Proposition 1. There exists a matrixG, whose symmetric part is positive semidefinite, that

satisfies Eq. (15), if and only if, there exists a vectorp which satisfies

pTV T

1 W1p � 0

pTV T

2 W2p � 0�
pT V T

1
W1p

��
pTV T

2
W2p

�
�

1

4

�
pTV T

1
W2p+ pT V T

2
W1p

�2
� 0

(16)

Furthermore, there exists a symmetric, positive semidefinite matrixG which solves Eq. (15) if

and only if there exists a vectorp which satisfies Eq. (16) andpTV T
1
W2p = pTV T

2
W1p.

Proof: Denotey1 = V1p; y2 = V2p; x1 = W1p and x2 = W2p: Then, Eq. (15) leads to

G[x1 x2 ] = [y1 y2 ], and the conditions in Eq. (16) becomeyT
1
x1 � 0; yT

2
x2 � 0 and�

yT
1
x1
��
yT
2
x2
�
�

1

4

�
yT
1
x2 + yT

2
x1
�2
� 0. Therefore,

[x1 x2 ]
T
G[x1 x2 ] = [x1 x2 ]

T [y1 y2 ]

=

�
xT
1
y1 xT

1
y2

xT
2
y1 xT

2
y2

�
(17)

Adding this relation and its transpose yields

[x1 x2 ]
T [sym(G)][x1 x2 ] =

�
yT
1
x1 0:5

�
yT
1
x2 + yT

2
x1
�

0:5
�
yT
1
x2 + yT

2
x1
�

yT
2
x2

�
(18)

Now if sym(G) � 0, then the equation above implies,
�

yT
1
x1 0:5

�
yT
1
x2 + yT

2
x1
�

0:5
�
yT
1
x2 + yT

2
x1
�

yT
2
x2

�
� 0 (19)

Noting that determinants of principal minors of a positive semidefinite matrix must be

nonnegative leads to conditions in Eq. (16). Thus, if there exists a matrixG, which satisfies Eq.

(15), and its symmetric part is positive semidefinite, then the vectorp must satisfy conditions

in Eq. (16).

Conversely, it has to be shown that if a vectorp satisfies the conditions in Eq. (16), then

there exists a matrixG which satisfies Eq. (15), whose symmetric part is positive semidefinite.
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This is proved by constructing such a matrix. LetX = [x1 x2 ] andY = [y1 y2 ], then Eq.

(15) is rewritten asGX = Y . Let Q be an orthogonal matrix, such that

QTY =

�eY1
0

�
(20)

where eY1 is a nonsingular2 � 2 matrix. The matrixQ can be obtained by QR factorization

of Y . Now, define eX1; eX2 as follows

� eX1eX2

�
= QTX (21)

where eX1 is a 2 � 2 matrix, and eX2 is a (m� 2) � 2 matrix. Now eX1 is nonsingular ifx1

andx2 are linearly independent (otherwise, Eq. 15 is solved trivially). DefiningeG11 = eY1 eX�11
,

it can be seen that

� eG11 0
0 0

�� eX1eX2

�
=

�eY1
0

�
(22)

Therefore, it follows that the matrixG defined asG = Q

� eG11 0
0 0

�
QT satisfiesGX = Y:

Next it is shown thatsym(G) � 0. From Eq. (19) it follows that conditions in Eq. (16)

imply sym
�
Y TX

�
� 0. Next, sinceY TX =

�
QTY

�T �
QTX

�
= eY T

1
eX1, sym

�
Y TX

�
� 0 leads

to sym
�eY T

1
eX1

�
� 0. Noting that sym

�eY T
1

eX1

�
= eXT

1

h
sym

� eG11

�i eX1 � 0, sym
� eG11

�
� 0

follows from the nonsingularity ofeX1. Finally, by construction,sym(G) � 0 if sym
� eG11

�
� 0.

Furthermore, ifG is symmetric, that is,G = sym(G), thenyT
1
x2 = xT

1
GTx2 = xT

2
GT x1 =

yT
2
x1, so that the additional condition in the proposition is satisfied. On the other hand,

the additional constraint ensures thatY TX = eY T
1

eX1 is symmetric. SinceeY1 = eG11
eX1,eY T

1
eX1 = eXT

1
eY1, and eX1 is nonsingluar, it follows thateG11 is symmetric. Finally, again

by construction,G is symmetric wheneG11 is symmetric. �

With this proposition, the problem of eigenpair assignment with dissipative output feedback

is reduced to selection of a coefficient vectorp which satisfies the conditions in Eq. (16). A

minimax approach to determining a coefficient vectorp which satisfies the conditions in Eq.

(16) is described next.
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Note that if there exists a coefficient vectorp which satisfies

pTV T

1 W1p�

����12
�
pTV T

1
W2p + pTV T

2
W1p

����� � 0

pTV T

2
W2p�

����12
�
pTV T

1
W2p + pTV T

2
W1p

����� � 0

(23)

then it also satisfies the conditions in Eq. (16). The first two inequalities of Eq. (16) are

obviously satisfied when the inequalities in Eq. (23) are satisfied, and multiplying the two

inequalities in Eq. (23) shows that the third condition of Eq. (16) is also satisfied. Further, the

inequalities in Eq. (23) can equivalently be written as four inequalities, which are quadratics

in the coefficient vector,p, as follows

f1(p) = pT
�
V T

1
W1 +

1

2

�
V T

1
W2 + V T

2
W1

��
p � 0

f2(p) = pT
�
V T

1
W1 �

1

2

�
V T

1
W2 + V T

2
W1

��
p � 0

f3(p) = pT
�
V T
2 W2 +

1

2

�
V T
1 W2 + V T

2 W1

��
p � 0

f4(p) = pT
�
V T

2
W2 �

1

2

�
V T

1
W2 + V T

2
W1

��
p � 0

(24)

A feasible coefficient vector,p, can now be obtained maximizing the minimum of the four

quadratics,fi(p); i = 1; :::;4. This problem becomes a standard minimax problem by reversing

the sign of the quadratics, that is, minimizing the maximum of�fi(p); i = 1; :::; 4. This

problem is transformed to a constrained minimization problem by introducing a scalar variable,

�, as follows22,

min
p;�

� such that fi(p) + � � 0; i = 1; :::; 4 (25)

Standard nonlinear programming techniques may be used for this constrained minimization.

Analytic gradients offi(p) are readily available, since the gradient of any quadratic,f(p) =

pTQp, is given by @
@p
f(p) =

�
Q+QT

�
p. The optimization of Eq. (25) is very well-behaved

because the functions,fi(p); i = 1; :::; 4, are quadratic inp, and analytic gradients are linear in

p. A nonpositive value of� in Eq. (25) provides a feasible coefficient vector,p, that satisfies

the conditions in Eq. (16) for existence of a gain matrix whose symmetric part is positive

14



semidefinite. The convergence of the nonlinear optimization in Eq. (25) is not an issue, since

the search can be terminated once a desirable target value of� (which must be negative) has

been attained. Furthermore, if a symmetric, positive semidefinite gain matrix is desired, the

additional equality constraint required for symmetry (in Proposition 1) can also be included in

the optimization of Eq. (25). Since this equality again involves a quadratic inp, its analytic

gradients are linear and readily available.

Experience in application of the minimax approach presented above has shown that this

technique is very effective in obtaining a feasible coefficient vector,p, which satisfies the

conditions in Eq. (16). However, a number of other approaches have also been explored

for this problem16,17. Another useful approach is to characterize a subspace for the vectorp,

which satisfies the first two conditions in Eq. (16). This can be accomplished by examining

the eigenvectors corresponding the positive eigenvalues of the symmetric parts of the matrices

V T
1
W1 and V T

2
W2. Then the function in the third inequality of Eq. (16) is maximized with

p being restricted to this subspace, until a positive value for that function is reached. This

approach has also proved successful for a number of problems, though the minimax approach

presented earlier has been successful in obtaining a feasible coefficient vector,p, for a larger

class of problems.

Once such a coefficient vector has been determined, the procedure given in the proof

of Proposition 1 can be followed to determine the gain matrixG, with positive semidefinite

symmetric part, that assigns the desired closed-loop complex-conjugate eigenvalues.

Position and Rate Feedback

Pole placement for second order models, such as those for dynamics of flexible space

structures, with both position and rate feedback is considered in this section. Position feedback

gives additional freedom to place closed-loop eigenvalues, which may not be feasible with rate

feedback alone. The technique for eigenpair placement with rate and position feedback parallels
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that for rate feedback alone, the difference being that the development is more involved since

expressions for both rate and position feedback gain matrices are considered simultaneously.

Consider a second-order model, as shown in Eq. (3), again. Position sensors are now

assumed to be collocated with the rate sensors and actuators to provide the position output.

Thus, anm� 1 vector of position output,yp, is given byyp = Cpz, whereCp =
�
FT 0

�
. As

before, the rate output isyr = Crz, whereCr =
�
0 F T

�
.

The eigensystem assignment problem is to determine anm � m symmetric, positive

semidefinite position gain matrix,Gp, and anm�m rate gain matrix,Gr, whose symmetric part

is positive semidefinite, such that the control lawu = �Gpyp � Gryr assigns dominant poles

of the system to desired locations. In other words, to determine gain matricesGp andGr such

that certain eigenvalues of(E;A�BGpCp �BGrCr) are at desired locations. Again, it must

be ensured that other closed-loop eigenvalues do not become unstable during output feedback

eigensystem assignment with position and rate feedback. Using Lyapunov function arguments,

it can be shown that ifGp is a symmetric, positive semidefinite matrix, and the symmetric part

of Gr is positive semidefinite, then the closed-loop system is stable.

A sequential methodology is used for eigensystem assignment with position and rate

feedback, extending the approach for rate feedback in previous sections. At each step of

the process, one self-conjugate eigenpair is assigned, while employing a structure for the

gain matrices such that previously placed eigenvalues are not disturbed. For initializing the

sequential procedure, setE1 = E, A1 = A, Bp;1 = B, Br;1 = B, Cp;1 = Cp, Cr;1 = Cr,

the original coordinates asz1 = z, and, the output gain matrices asGp;0 = Gr;0 = 0. At

the kth step of the sequential procedure, orthogonal matricesLk and Uk are selected such

that eEk = LT
kEkUk and eAk = LT

kAkUk are in ordered real Schur form, and the(k � 1) self-

conjugate eigenvalue pairs assigned in the previous steps are in the top left block of
� eEk; eAk

�
.

Applying these transformations to the system matrices leads toeBp;k = LT
kBp;k, eBr;k = LT

kBr;k,

eCp;k = Cp;kUk and eCr;k = Cr;kUk. Partition eCp;k and eCr;k as follows: eCp;k =
h eCp;k1

eCp;k2

i
and eCr;k =

h eCr;k1
eCr;k2

i
, where eCp;k1, eCr;k1 arem � 2(k � 1) matrices. System matrices

eEk; eAk; eBp;k and eBr;k are also partitioned conformally. Let the columns ofeNp;k form an
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orthogonal basis for left null space ofeCp;k1, and let the columns ofeNr;k form an orthogonal basis

for left null space ofeCr;k1. Form the rate and position gain matrices for thekth step as follows:eGp;k =
eNp;k

bGp;k
eNT
p;k, wherebGp;k is an arbitrary matrix to be defined; andeGr;k =

eNr;k
bGr;k

eNT
r;k,

where bGr;k is an arbitrary matrix to be defined. Then, the matriceseGp;k and eGr;k do not affect

the previously placed eigenvalues. To see this, consider the expanded form of the closed-loop

system matrix,
� eAk �

eBp;k
eGp;k

eCp;k �
eBr;k

eGr;k
eCr;k

�
, shown below.

" eAk11
eAk12 �

eBp;k1
eNp;k

bGp;k
eNT
p;k

eCp;k2 �
eBr;k1

eNr;k
bGr;k

eNT
r;k

eCr;k2

0 eAk22 �
eBp;k2

eNp;k
bGp;k

eNT
p;k

eCp;k2 �
eBr;k2

eNr;k
bGr;k

eNT
r;k

eCr;k2

#
(26)

The first column of submatrices remains unaffected by the feedback becauseeNT
p;k

eCp;k1 = 0 and eNT
r;k

eCr;k1 = 0. Thus the eigenvalues of the closed-loop system

with position and rate feedback of this form are the union of the eigenvalues of� eEk11; eAk11

�
, which are the previously placed eigenvalues, and the eigenvalues of� eEk22; eAk22 �
eBp;k2

eNp;k
bGp;k

eNT
p;k

eCp;k2 �
eBr;k2

eNr;k
bGr;k

eNT
r;k

eCr;k2

�
. Denoting bEk = eEk22,bAk = eAk22, bBp;k = eBp;k2

eNp;k, bBr;k = eBr;k2
eNr;k, bCp;k = eNT

p;k
eCp;k2, and bCr;k = eNT

r;k
eCr;k2,

the problem is to select matricesbGp;k and bGr;k that satisfy the closed-loop stability

constraints and that
� bEk; bAk �

bBp;k
bGp;k

bCp;k �
bBr;k

bGr;k
bCr;k

�
has one self-conjugate pair

at the desired values. The gain matrices are updated asGp;k = Gp;k�1 + eGp;k and

Gr;k = Gr;k�1 + eGr;k, and the system matrices are updated for the succeeding steps as:

Ek+1 = eEk, Ak+1 =
� eAk �

eBp;k
eGp;k

eCp;k �
eBr;k

eGr;k
eCr;k

�
, Bp;k+1 = eBp;k, Br;k+1 = eBr;k,

Cp;k+1 = eCp;k andCr;k+1 = eCr;k. This procedure may be repeated up tom=2 times, where

m is the number of inputs to the system.

For notational simplicity, consider synthesis of position and rate gain matricesGp; Gr for

eigenplacement of the system given by the matricesE;A;Bp; Br; Cp; Cr. In other words, the

problem has been reduced to selecting a symmetric, positive semidefinite position gain matrix,

Gp, and a rate gain matrix,Gr, whose symmetric part is positive semidefinite, such that
�
�; �

�
is an eigenpair of the generalized eigenvalue problem(E;A�BpGpCp �BrGrCr). Let � be
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the closed-loop eigenvector such that(�E �A+BpGpCp +BrGrCr)� = 0, or equivalently,

[�E �A j Bp j Br ]

2
664

�
���
GpCp�
���
GrCr�

3
775 � �

2
664

�
���
GpCp�
���
GrCr�

3
775 = 0 (27)

Let N be a matrix whose columns form the right null space of�. Then, solution to Eq. (27)

may be written as

2
664

�
���
GpCp�
���
GrCr�

3
775 =

2
664

N1

���
Np

���
Nr

3
775� (28)

whereN1; Np andNr are conformal partitions of the matrixN , and� is an arbitrary coefficient

vector. Eq. (28) leads to

GpCpN1� = Np�

GrCrN1� = Nr�
(29)

Similar treatment for the complex-conjugate eigenvalue,�, and a corresponding eigenvector,

�, leads to

GpCpN 1� = Np�

GrCrN1� = N r�
(30)

Combining these equations to restrict all operations to real arithmetic results in

GrWr1p = Vr1p GpWp1p = Vp1p

GrWr2p = Vr2p GpWp2p = Vp2p
(31)

where p = [Re(�); Im(�) ]; Wr1 = Cr[Re(N1) �Im(N1) ]; Vr1 = [Re(Nr) �Im(Nr) ];

Wr2 = Cr[Im(N1) Re(N1) ]; Vr2 = [Im(Nr) Re(Nr) ]; Wp1 = Cp[Re(N1) �Im(N1) ];

Vp1 = [Re(Np) �Im(Np) ]; Wp2 = Cp[Im(N1) Re(N1) ]; and Vp2 = [Im(Np) Re(Np) ].

Thus, the problem of eigensystem placement with rate and position feedback is reduced to

selecting a coefficient vectorp, a symmetric, positive semidefinite matrix,Gp, and a matrix,

Gr, whose symmetric part is positive semidefinite which satisfy Eq. (31). The conditions for

existence of a solution to this system of quadratic equations is given in the following proposition.
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Proposition 2. There exists a symmetric, positive semidefinite matrix,Gp, and a matrix,Gr,

whose symmetric part is positive semidefinite, which satisfy Eq. (31), if and only if, there

exists a vectorp that satisfies

pTV T
p1Wp1p � 0 pTV T

r1Wr1p � 0

pTV T
p2Wp2p � 0 pTV T

r2Wr2p � 0�
pTV T

p1Wp1p
��

pTV T
p2Wp2p

�
�

1

4

�
pTV T

p1Wp2p + pTV T
p2Wp1p

�2
� 0

�
pTV T

r1Wr1p
��

pTV T
r2Wr2p

�
�

1

4

�
pTV T

r1Wr2p + pTV T
r2Wr1p

�2
� 0

pTV T
p1Wp2p = pTV T

p2Wp1p

(32)

The proof of this proposition follows that of Proposition 1 for rate feedback.

Again, a minimax approach can be employed to determine a feasible coefficient vector,p,

which would satisfy the conditions of Eq. (32). It can be easily verified that a vectorp satisfies

these conditions if it satisfies the following eight quadratic inequalities,

f1(p) = pT
�
V T
p1Wp1 +

1

2

�
V T
p1Wp2 + V T

p2Wp1

��
p � 0

f2(p) = pT
�
V T
p1Wp1 �

1

2

�
V T
p1Wp2 + V T

p2Wp1

��
p � 0

f3(p) = pT
�
V T
p2Wp2 +

1

2

�
V T
p1Wp2 + V T

p2Wp1

��
p � 0

f4(p) = pT
�
V T
p2Wp2 �

1

2

�
V T
p1Wp2 + V T

p2Wp1

��
p � 0

f5(p) = pT
�
V T
r1Wr1 +

1

2

�
V T
r1Wr2 + V T

r2Wr1

��
p � 0

f6(p) = pT
�
V T
r1Wr1 �

1

2

�
V T
r1Wr2 + V T

r2Wr1

��
p � 0

f7(p) = pT
�
V T
r2Wr2 +

1

2

�
V T
r1Wr2 + V T

r2Wr1

��
p � 0

f8(p) = pT
�
V T
r2Wr2 �

1

2

�
V T
r1Wr2 + V T

r2Wr1

��
p � 0

(33)

and the equality constraint ensuring symmetry of the position gain matrix. A vectorp satisfying

these conditions can be determined by maximizing the minimum offi(p); i = 1; :::;8. This

is accomplished by performing a constrained minimization, similar to that of Eq. (25), with

the additional equality constraint for symmetry of the position gain matrix. This minimax
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approach for determining feasible coefficient vectorsp satisfying the conditions of Eq. (32)

has been very successful in practical application, though a number of other techniques have

been attempted16,17. Once a coefficient vector satisfying the constraints in Eq. (32) has been

determined, the procedure to construct the desired matrices also follows the same approach as

for rate feedback.

Numerical Example

The approach for eigensystem assignment with dissipative gains has been applied for

synthesis of controllers to enhance the damping of the phase 2 CSI Evolutionary Model (CEM),

a testbed for control of flexible space structures at NASA Langley. Damping enhancement

control for this structure represents a typical problem in the control of flexible space structures,

since this structure possesses numerous, closely spaced, low-frequency modes, with uncertain

modal parameters. Damping enhancement is required since inherent damping of the structure is

very low. However, general output feedback pole placement techniques for increasing damping

in the dominant low frequency modes have a tendency to destabilize the remaining modes of

the system. When collocated rate sensors and actuators are used, the dynamics of the structure

are passive, and the technique described in this paper can be applied for damping enhancement

of the dominant modes, while ensuring stability of the overall closed-loop system.

The phase 2 CEM structure consists of a 62–bay central truss (each bay is 10 inches long),

along with two horizontal booms for suspension, a vertical laser, and a vertical reflector tower,

as shown in Fig. 1. This structure has 10 modes with frequencies up to about 5 Hz., and

95 modes with frequencies under 60 Hz. The first six modes are rigid body modes, due to

suspension of the structure from the laboratory ceiling, that have frequencies up to about 0.3 Hz.

Eight control stations housing collocated and compatible sensors and actuators are located at the

bays shown in Fig. 1. Air thrusters providing linear forces are available at these locations, along

the directions shown in Fig. 1, providing an8� 1 control input vector,u. Linear velocities are
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assumed to be available at these locations, along the same directions, giving a8�1 measurement

vector, y. The problem is to determine an8 � 8 rate gain matrix,G, whose symmetric part

is positive semidefinite, such that the control lawu = �Gy places a subset of the closed-loop

eigenvalues at desired locations without destabilizing the remaining modes of the structure.

A control design model of the first 10 modes of the structure is used for this numerical

example. Low inherent damping ratio of 0.1 percent has been assumed for the open-loop system.

The open-loop eigenvalues along with damping and frequencies are shown in Table 1. Modal

displacements at the eight sensor/ actuator locations are shown in Table 2. Sincem = 8 control

inputs are available, it is possible to assign desired amount of damping to up to4 modes.

The first objective was to increase damping ratio in the first mode to 10 % that is, the first

desired pair of closed-loop eigenvalues was�1;2 = �0:0818� 0:8139j. Proceeding as described

above, the system of quadratic equations in Eq. (15) was constructed for this eigenassignment.

Then, a coefficient vector,p, which satisfies the conditions in Eq. (16) was determined as

p = [1:0; 1:0; 1:0; �1:0; �1:0; 1:0; �1:0; 1:0; 1:0;

�0:2757; 0:8621; �1:0; 1:0; �1:0; 1:0; �1:0]

using the minimax approach. Upper bounds on components of the coefficient vector,p, were

set to 1:0, and lower bounds were set to�1:0, for the constrained optimization problem in

determining this coefficient vector. Proceeding as described in the proof of Proposition 1, a

gain matrixG1 for this eigenplacement was computed. Nonzero eigenvalues of the symmetric

part ofG1 are0:4129 and0:8035, which demonstrates that the symmetric part ofG1 is positive

semidefinite. Closed-loop eigenvalues with this gain matrix are shown in Table 3. It should be

observed that the gain matrix,G1, successfully increased damping ratio of the first mode to 10

% without destabilizing other modes. In fact, damping is increased in most other modes due

to the dissipative nature of the controller.

For the second step, damping ratio in the second mode of the system was to be

increased to 10 % resulting in the second pair of desired complex-conjugate eigenvalues to
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be �3;4 = �0:0830 � 0:8259j. A coefficient vector that satisfies the necessary and sufficient

conditions for eigenplacement in Eq. (16) was determined as

p = [1:0; 1:0; 1:0; 0:7088; 1:0; �1:0; �1:0; �1:0; �1:0;

�0:5250; �1:0; 1:0 ]

Note that the dimension of the coefficient vector,p, for the second step has decreased by4 as

compared to the first step, since the dimension of the left null space ofeC12 for the second step

has decreased by2, that is,m2 = 6. The cumulative gain matrixG2 for placing two eigenpairs

has nonzero eigenvalues of the symmetric part at0:2090, 0:6899, 0:9358 and 1:8008, which

demonstrates the stability constraint on the structure of gain matrices is satisfied. The closed-

loop eigenvalues with the gain matrix,G2, are presented in Table 4, showing that both pair of

complex conjugate eigenvalues are successfully placed without destabilizing any other modes.

In the third step, damping ratio of the third mode was increased to 10 % which leads to

the third pair of complex-conjugate eigenvalues as�5;6 = �0:0857 � 0:8522j. Repeating the

operations for the third step, a coefficient vector which satisfies the conditions in Eq. (16) was

p = [�1:0; 1:0; �1:0; �0:9664; �1:0; 1:0; �1:0; 0:5762]

which led to the cumulative gain matrix ofG3 for the third step with nonzero eigenvalues

of the symmetric part at0:0961 , 0:2843 , 0:7060 , 0:9694 , 1:9922 and 4:2001. Closed-loop

eigenvalues with gainG3 are shown in Table 5. Again, damping ratio in the first three modes

has been increased exactly to 10 % as desired without destabilizing any other modes. In fact,

damping in most other modes has increased, with mode 6 being overdamped. Furthermore,

modes 4, 5, 7 and 8 are also very well damped.

With 8 control actuators, it is possible to increase damping in one other mode. Therefore,

mode 9 was chosen for an increase in its damping ratio to 10 % that is, the final pair of desired

closed-loop eigenvalues was chosen as�7;8 = �1:8692�18:5982j. A feasible coefficient vector

for this case was determined to bep = [�1:0; �1:0; �0:7275; 0:0497]. The final gain matrix,
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G, that places four desired closed-loop eigenpairs, without destabilizing other higher frequency

modes, was computed to be

G = G4 =

2
6666666664

0:7471 0:2028 �0:3887 �0:8128 �0:2086 0:1163 �0:3025 �0:9071

0:3282 1:1480 0:2282 �1:4228 0:9391 0:1604 �1:1181 �0:1716

�0:5818 �0:4845 1:1284 1:5011 �0:1217 �0:4460 0:0589 0:2609

�0:4390 �0:8793 �0:3065 3:1249 �1:3062 0:4245 1:1933 0:2856

0:4710 1:2129 �0:7990 �1:4584 4:1617 0:4467 �3:9649 0:1294

0:4000 0:1577 �0:5367 �0:8686 �0:1063 0:3813 0:1086 �0:3153

�0:7939 �1:3759 1:1685 1:7430 �4:1583 �0:6551 4:5028 0:2142

�0:8909 0:0902 0:3491 0:3117 0:3107 �0:0493 0:4911 1:2872

3
7777777775

Eigenvalues of the symmetric part of the overall gain matrix,G, are

0:0043; 0:0969; 0:1242; 0:5703; 1:0164; 1:9239; 3:0166 and 9:7289, that is, sym(G) > 0.

Closed-loop eigenvalues with the overall gain matrix is shown in Table 6, showing that all four

closed-loop eigenvalue pairs have been placed at their desired locations, without destabilizing

any of the higher frequency modes. In fact, damping has tended to increase in most other

modes. This example clearly demonstrates the effectiveness of the proposed dissipative

controller design technique for robust eigensystem assignment.

Results of damping enhancement control with both position and rate feedback are presented

next. First, damping ratio of mode 1 was increased to 10 %. Following a procedure outlined in

the previous section, a symmetric, positive semidefinite position gain matrix, were determined to

assign the closed-loop pair. Closed-loop eigenvalues with these rate and position gain matrices

are shown in Table 7. Proceeding with the sequential procedure, the damping ratios of modes

2, 3 and 7 were increased to 10 %. The eigensystem assignment procedure resulted in the

following cumulative symmetric, positive definite position gain matrix,

Gp =

2
6666666664

3:4841 �0:1125 �4:6653 0:2965 �0:2298 3:1246 1:1816 �1:9022

�0:1125 1:9084 �0:5832 �1:6722 7:2152 0:1647 �6:5656 �0:1680

�4:6653 �0:5832 7:9072 0:3844 1:5834 �4:2352 �3:1930 2:7889

0:2965 �1:6722 0:3844 1:7415 �6:4787 0:1705 6:4519 �0:1206

�0:2298 7:2152 1:5834 �6:4787 46:6525 �0:2519 �45:6357 0:2129

3:1246 0:1647 �4:2352 0:1705 �0:2519 3:3434 1:2556 �1:8501

1:1816 �6:5656 �3:1930 6:4519 �45:6357 1:2556 46:9748 �1:4609

�1:9022 �0:1680 2:7889 �0:1206 0:2129 �1:8501 �1:4609 1:4274

3
7777777775
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and a rate gain matrix, whose symmetric part is positive definite,

G
r
=

2
6666666664

0:6007 �0:7380 �0:6090 0:7122 �0:4572 0:6321 �1:0302 0:6469

0:4598 0:4789 0:4392 0:0355 1:6212 0:5455 0:0844 �1:3040

�0:4611 �0:3645 1:0371 0:5755 �0:3726 �0:1362 0:9946 0:3222

�0:7028 �0:7606 �0:3794 0:8393 �0:6959 �1:4334 0:3812 1:6530

0:9575 �0:3045 �0:4236 �0:5543 3:5101 0:5159 �3:4491 �0:6720

0:2021 �0:7357 �0:9152 1:4169 �0:0963 0:6254 �0:6292 0:3972

0:3593 �1:0655 �0:1207 0:9327 �2:6389 0:1686 3:3490 �0:4591

�1:2277 1:3110 0:0893 �1:6916 0:2233 �0:6664 0:5661 0:3660

3
7777777775

Table 8 shows the closed-loop system eigenvalues using the rate and position gain matrices

obtained. It is observed that the desired closed-loop eigenvalues have been placed while

maintaining stability of the other modes. Comparing the frequencies of the closed-loop poles, it

is noted that some of the system frequencies have been shifted significantly from their open-loop

values. Position gain brings about this shift in frequencies of the open-loop system, as may be

anticipated. On the contrary, frequencies of the closed-loop system with rate feedback alone, in

Tables 3–6, remain close to the open-loop values. This demonstrates one of the benefits of using

both position and rate feedback, namely, significant shift in open-loop frequencies is possible

if desired. Moreover, inclusion of the position feedback provides additional freedom beyond

eigenvalue assignment such that improved controller designs are possible.
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Concluding Remarks

This paper presents a novel approach for robust eigensystem assignment using constant gain

output feedback controllers with dissipativity constraints, that is, output feedback eigensystem

with gain matrices whose symmetric parts are positive semidefinite. Robust eigensystem

assignment in this context implies that stability of the closed-loop system is guaranteed, whereas

in general eigensystem assignment using output feedback may destabilize the closed-loop system.

This approach can be used for robust output eigensystem assignment for any passive LTI system

in descriptor form. Specifically, it has been applied to second-order models of flexible structures

with rate feedback. A sequential procedure is used to place one pair of complex conjugate closed-

loop eigenvectors in each step of the procedure, while ensuring that the previously assigned

eigenvalues are not disturbed using generalized Schur transformations. The problem of assigning

one pair of complex-conjugate closed-loop eigenvalues with gain matrices of a specified structure

is reduced to a constrained solution of a system of quadratic equations. Necessary and sufficient

conditions for the existence of a solution to these equations are presented in terms of inequality

constraints on a coefficient vector. A minimax approach is presented to determine coefficient

vectors which satisfy these constraints. It is shown that the sequential procedure can be used

to assign up tom self-conjugate closed-loop eigenvalues, wherem is the number of control

inputs. For second-order models of flexible space structures, the approach has been extended

for robust eigensystem assignment with both position and rate feedback. A numerical example

of damping enhancement for a large flexible structure has been presented to demonstrate the

approach. This example clearly demonstrates that the proposed approach provides a practical

technique to design controllers that enhance the performance of the open-loop system while

ensuring that the overall system remains stable.
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Open-loop Eigenvalues Damping Ratio
Frequency

(rad/sec)

-0.0008� 0.8180j 0.0010 0.8180

-0.0008� 0.8301j 0.0010 0.8301

-0.0009� 0.8565j 0.0010 0.8565

-0.0011� 1.1308j 0.0010 1.1308

-0.0011� 1.1401j 0.0010 1.1401

-0.0019� 1.9100j 0.0010 1.9100

-0.0107� 10.7278j 0.0010 10.7278

-0.0149� 14.9425j 0.0010 14.9425

-0.0187� 18.6919j 0.0010 18.6919

-0.0341� 34.0618j 0.0010 34.0618

Table 1. Open-loop eigenvalues

Mode

No
1 2 3 4 5 6 7 8

1 0.8315 -0.0029 0.6053 -0.0022 -0.0346 0.3567 -0.0347 0.6192

2 0.0299 0.0059 -0.0492 -0.0002 -0.6041 -0.1195 -0.6025 -0.0040

3 0.7498 -0.0023 -0.1425 -0.0007 0.0614 -0.9645 0.0611 0.2986

4 0.0000 -0.3740 -0.0012 0.3563 -0.0581 0.0030 -0.1936 0.0113

5 -0.0014 -1.0268 0.0030 -0.4847 -0.0434 -0.0054 -0.1433 -0.0304

6 0.1430 0.0067 0.3071 0.0047 0.0000 -0.3702 0.0001 -1.7897

7 -0.8114 0.0024 0.3292 0.0031 0.0010 -0.5627 -0.0013 1.3165

8 0.0002 -1.2687 -0.0004 0.9737 0.3943 0.0019 -0.9521 -0.0072

9 1.2653 -0.0089 -1.0289 0.0021 -0.0009 0.3151 0.0164 0.3747

10 -0.0165 1.0266 0.0059 0.0330 0.6375 0.0238 0.6428 0.0114

Table 2. Modal Displacements at Control Stations.
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Closed-loop Eigenvalues Damping Ratio
Frequency

(rad/sec)

-0.0818� 0.8139j 0.1000 0.8180

-0.0036� 0.8337j 0.0043 0.8338

-0.0133� 0.8555j 0.0156 0.8556

-0.0352� 1.1253j 0.0313 1.1258

-0.2343� 1.1112j 0.2064 1.1356

-0.2059� 1.9091j 0.1072 1.9202

-0.1326� 10.7310j 0.0124 10.7319

-0.2305� 14.9345j 0.0154 14.9363

-0.2526� 18.6891j 0.0135 18.6908

-0.2818� 34.0550j 0.0083 34.0561

Table 3. Closed-loop Eigenvalues With Gain,G1.

Closed-loop Eigenvalues Damping Ratio
Frequency

(rad/sec)

-0.0818� 0.8139j 0.1000 0.8180

-0.0830� 0.8259j 0.1000 0.8301

-0.0159� 0.8540j 0.0186 0.8541

-0.1924� 0.9840j 0.1919 1.0026

-0.3145� 1.1213j 0.2701 1.1646

-0.7568� 1.9581j 0.3605 2.0993

-0.2719� 10.7216j 0.0254 10.7251

-1.5302� 14.9152j 0.1021 14.9935

-0.6473� 18.7686j 0.0345 18.7798

-0.4675� 34.0439j 0.0137 34.0471

Table 4. Closed-loop Eigenvalues With Gain,G2.
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Closed-loop Eigenvalues Damping Ratio
Frequency

(rad/sec)

-0.0818� 0.8139j 0.1000 0.8180

-0.0830� 0.8259j 0.1000 0.8301

-0.0857� 0.8522j 0.1000 0.8565

-0.3648� 1.0437j 0.3300 1.1056

-0.3463� 1.1514j 0.2880 1.2024

-2.5906� 1.5782 1.2610 2.0544

-2.7128� 9.5085j 0.2744 9.8879

-2.0568� 14.5821j 0.1397 14.7265

-1.3549� 18.5311j 0.0729 18.5806

-0.5327� 34.0089j 0.0157 34.0131

Table 5. Closed-loop Eigenvalues With Gain,G3.

Closed-loop Eigenvalues Damping Ratio
Frequency

(rad/sec)

-0.0818� 0.8139j 0.1000 0.8180

-0.0830� 0.8259j 0.1000 0.8301

-0.0857� 0.8522j 0.1000 0.8565

-0.3648� 1.0436j 0.3300 1.1055

-0.3463� 1.1514j 0.2881 1.2023

-2.6015� 1.5893 1.2631 2.0595

-2.8671� 9.3545j 0.2930 9.7840

-3.2694� 14.3800j 0.2217 14.7470

-1.8692� 18.5982j 0.1000 18.6919

-0.6009� 34.0359j 0.0177 34.0412

Table 6. Closed-loop Eigenvalues With Gain,G4.
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Closed-loop Eigenvalues Damping Ratio
Frequency

(rad/sec)

-0.0818� 0.8139j 0.1000 0.8180

-0.0046� 0.8415j 0.0055 0.8415

-0.0072� 1.1550j 0.0062 1.1550

-0.0081� 1.2455j 0.0065 1.2455

-0.0997� 1.4382j 0.0692 1.4417

-0.1580� 2.0261j 0.0778 2.0322

-0.0461� 10.8179j 0.0043 10.8180

-0.1222� 14.9897j 0.0081 14.9902

-0.0696� 18.7224j 0.0037 18.7225

-0.0599� 34.0745j 0.0018 34.0745

Table 7. Closed-loop Eigenvalues With Position Gain,Gp1 and Rate GainGr1.

Closed-loop Eigenvalues Damping Ratio
Frequency

(rad/sec)

-0.0818� 0.8139j 0.1000 0.8180

-0.0830� 0.8259j 0.1000 0.8301

-0.0857� 0.8522j 0.1000 0.8565

-0.1575� 1.3598j 0.1151 1.3689

-0.1682� 1.6559j 0.1010 1.6644

-0.5009� 3.7347j 0.1329 3.7682

-1.0728� 10.6741j 0.1000 10.7278

-1.2597� 18.5179j 0.0679 18.5607

-3.5796� 20.9683j 0.1683 21.2717

-0.7608� 34.7506j 0.0219 34.7589

Table 8. Closed-loop Eigenvalues With Position Gain,Gp4 and Rate GainGr4.
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Figure 1. Schematic of Phase 2 CEM Structure, With Location of 8 Control Stations.

32


